Zhi-Biao Zhu, Shan Gao,* Ji-Wei Liu, Li-Hua Huo and Hui Zhao

College of Chemistry and Chemical Technology, Heilongjiang University, Harbin 150080,
People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.045$
$w R$ factor $=0.128$
Data-to-parameter ratio $=15.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Diaquadiformatodipyridinecobalt(II)

Abstract

The $\mathrm{Co}^{\text {II }}$ atom in the title complex, $\left[\mathrm{Co}\left(\mathrm{CHO}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$], has an octahedral coordination geometry involving two O atoms of formate ligands, two pyridine N atoms and two water molecules. The Co atom lies on an inversion center. A supramolecular three-dimensional network structure is constructed by hydrogen bonds and $\pi-\pi$ stacking interactions.

Comment

Many structures of cobalt(II) complexes containing pyridine and organic carboxylic acids have been reported, in which the organic carboxylic acids mainly focus on acetic acid (Ye et al., 2000; Lu et al., 1998; Sumner et al., 1985, 1988; Coucouvanis et al., 1995), benzoic acid (Davies et al., 1977), terephthalic acid (Pan et al., 2000; Groeneman et al., 1999) and 1,3,5-benzenetricarboxylic acid (Plater et al., 1999). However, the complexes of pyridine and formic acid are less well documented. In the present study, the reaction of cobalt dichloride hexahydrate, pyridine, formic acid and benzene-1,4-dioxyacetic acid under basic conditions gave the title complex, (I), whose crystal structure is reported here.

(I)

As shown in Fig. 1, the title complex has a mononuclear structure, in which each formate group is bonded to the $\mathrm{Co}^{\mathrm{II}}$ atom in a monodentate fashion and the $\mathrm{Co}^{\mathrm{II}}$ atom lies on a center of symmetry. The $\mathrm{Co}^{\mathrm{II}}$ atom exists in an octahedral coordination environment, defined by two O atoms of different formate ligands $[\mathrm{Co}-\mathrm{O}=2.081$ (2) \AA], two pyridine N atoms $[\mathrm{Co}-\mathrm{N}=2.159$ (2) \AA] and two water molecules $[\mathrm{Co}-\mathrm{O}=2.143(2) \AA$. A . The cis angles around the Co atom range from 86.70 (7) to $93.30(7)^{\circ}$. The $\mathrm{C} 6-\mathrm{O} 1$ distance [1.236 (3) \AA] is slightly shorter than C6-O2 [1.253 (3) \AA], and the $\mathrm{O} 1-\mathrm{C} 6-\mathrm{O} 2$ angle is $126.6(2)^{\circ}$. Intermolecular hydrogen bonds are formed between the uncoordinated carboxy O atoms and water molecules, resulting in a two-dimensional layer framework structure (Table 2). There are $\pi-\pi$ stacking interactions between adjacent pyridine rings of 3.77 (4) A. A supramolecular three-dimensional network structure is

Received 27 April 2004

 Accepted 12 May 2004 Online 22 May 2004constructed by intermolecular hydrogen bonds and $\pi-\pi$ stacking interactions (Fig. 2).

Experimental

The title complex was prepared by the addition of cobalt diacetate trihydrate (20 mmol), pyridine (3 ml) and formic acid (1 ml) to an aqueous solution of benzene-1,4-dioxyacetic acid (20 mmol), and the pH was adjusted to 6 with 0.1 M sodium hydroxide. Pink crystals were separated from the filtered solution after several days. Analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{CoN}_{2} \mathrm{O}_{6}$: C 41.99, H 4.70, N 8.16%; found: C 41.71, H 4.83, N 8.06\%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{CHO}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=343.20$
Monoclinic, $C 2 / c$
$a=16.564$ (6) A
$b=6.300(2) \AA$
$c=14.597(6) \AA$
$\beta=109.73(2)^{\circ}$
$V=1433.7(9) \AA^{3}$
$Z=4$
$D_{x}=1.590 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.602, T_{\text {max }}=0.766$
5339 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.128$
$S=1.07$
1641 reflections
103 parameters
H atoms treated by a mixture of independent and constrained refinement

Mo $K \alpha$ radiation
Cell parameters from 4837 reflections
$\theta=3.2-27.5^{\circ}$
$\mu=1.23 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, pink
$0.45 \times 0.36 \times 0.22 \mathrm{~mm}$

> 1641 independent reflections
> 1488 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.042$
> $\theta_{\max }=27.5^{\circ}$
> $h=-21 \rightarrow 21$
> $k=-7 \rightarrow 8$
> $l=-18 \rightarrow 18$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0875 P)^{2}\right. \\
& +0.7449 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}<0.001 \\
& \Delta \rho_{\text {max }}=0.87 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.54 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{N} 1$	$2.159(2)$	$\mathrm{O} 1-\mathrm{C} 6$	$1.236(3)$
$\mathrm{Co} 1-\mathrm{O} 1$	$2.081(2)$	$\mathrm{O} 2-\mathrm{C} 6$	$1.253(3)$
$\mathrm{Co} 1-\mathrm{O} 1 W$	$2.143(2)$		
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	180	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 1 W$	$93.30(7)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	$92.37(7)$	$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{N} 1$	$91.68(7)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	$87.63(7)$	$\mathrm{O} 1 W^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	$88.32(7)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1$	180	$\mathrm{O} 1 W^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1 W$	180
$\mathrm{O}^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1 W$	$86.70(7)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{O} 2$	$126.6(2)$
Symmetry code: $(\mathrm{i}) \frac{1}{2}-x, \frac{3}{2}-y, 1-z$.			

Symmetry code: (i) $\frac{1}{2}-x, \frac{3}{2}-y, 1-z$.

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1W-H1W1 $\cdots \mathrm{O}^{\mathrm{ii}}$	$0.86(3)$	$1.98(3)$	$2.810(3)$	$163(3)$
O1 $^{\mathrm{in}}-\mathrm{H} 1 W 2 \cdots \mathrm{O}^{\mathrm{iii}}$	$0.86(3)$	$1.95(3)$	$2.773(3)$	$163(3)$

Symmetry codes: (ii) $x, y-1, z$; (iii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$.

C-bound H atoms were placed in calculated positions [$\mathrm{C}-\mathrm{H}=$ $0.97 \AA$ (aliphatic) and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$ in the riding-model

Figure 1
ORTEPII (Johnson, 1976) plot of (I), shown with 30% probability ellipsoids. [Symmetry code as in Table 1.]

Packing diagram of (I).
approximation. Water H atoms were located in a difference Fourier map and refined using the riding-model approximation, with an $\mathrm{O}-$ H distance restraint of $0.85(1) \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the National Natural Science Foundation of China (No. 20101003), Heilongjiang Province Natural Science Foundation (No. B0007), the Educational Committee Foundation of Heilongjiang Province, and Heilongjiang University.

References

Coucouvanis, D., Reynolds, R. A. \& Dunham, W. R. (1995). J. Am. Chem. Soc. 117, 7570-7571.
Davies, J. E., Rivera, A. V. \& Sheldrick, G. M. (1977). Acta Cryst. B33, 156158.

Groeneman, P. H., MacGillivray, L. R. \& Atwood, J. L. (1999). Inorg. Chem. 38, 208-209.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lu, J., Yu, C., Niu, T.-Y., Paliwala, T., Crisci, G., Somosa, F. \& Jacobson, A. J. (1998). Inorg. Chem. 37, 4637-4640.

Pan, L., Ching, N., Huang, X.-Y. \& Li, J. (2000). Inorg. Chem. 39, 5333-5340.
Plater, M. J., Foreman, M. R. St J., Coronado, E., Gomez-Garcia, C. J. \& Slawin, A. M. Z. (1999). J. Chem. Soc. Dalton Trans. pp. 4209-4216.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
Sumner, C. E. (1988). Inorg. Chem. 27, 1320-1327.
Sumner, C. E. \& Steinmetz, G. R. (1985). J. Am. Chem. Soc. 107, 61246126.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Ye, B.-H., Chen, X.-M., Xue, F., Ji, L.-N. \& Mak, T. C. W. (2000). Inorg. Chim. Acta, 299, 1-8.

