metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhi-Biao Zhu, Shan Gao,* Ji-Wei Liu, Li-Hua Huo and Hui Zhao

College of Chemistry and Chemical Technology, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail: shangao67@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C-C}) = 0.005 \text{ Å}$ R factor = 0.045 wR factor = 0.128 Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diaquadiformatodipyridinecobalt(II)

The Co^{II} atom in the title complex, $[Co(CHO_2)_2(C_5H_5N)_2(H_2O)_2]$, has an octahedral coordination geometry involving two O atoms of formate ligands, two pyridine N atoms and two water molecules. The Co atom lies on an inversion center. A supramolecular three-dimensional network structure is constructed by hydrogen bonds and π - π stacking interactions.

Received 27 April 2004 Accepted 12 May 2004 Online 22 May 2004

Comment

Many structures of cobalt(II) complexes containing pyridine and organic carboxylic acids have been reported, in which the organic carboxylic acids mainly focus on acetic acid (Ye *et al.*, 2000; Lu *et al.*, 1998; Sumner *et al.*, 1985, 1988; Coucouvanis *et al.*, 1995), benzoic acid (Davies *et al.*, 1977), terephthalic acid (Pan *et al.*, 2000; Groeneman *et al.*, 1999) and 1,3,5-benzenetricarboxylic acid (Plater *et al.*, 1999). However, the complexes of pyridine and formic acid are less well documented. In the present study, the reaction of cobalt dichloride hexahydrate, pyridine, formic acid and benzene-1,4-dioxyacetic acid under basic conditions gave the title complex, (I), whose crystal structure is reported here.

As shown in Fig. 1, the title complex has a mononuclear structure, in which each formate group is bonded to the Co^{II} atom in a monodentate fashion and the Co^{II} atom lies on a center of symmetry. The Co^{II} atom exists in an octahedral coordination environment, defined by two O atoms of different formate ligands [Co-O = 2.081 (2) Å], two pyridine N atoms $[Co-N = 2.159 (2) \text{ \AA}]$ and two water molecules [Co-O = 2.143 (2) Å]. The *cis* angles around the Co atom range from 86.70 (7) to 93.30 (7)°. The C6-O1 distance [1.236 (3) Å] is slightly shorter than C6–O2 [1.253 (3) Å], and the O1-C6-O2 angle is 126.6 (2)°. Intermolecular hydrogen bonds are formed between the uncoordinated carboxy O atoms and water molecules, resulting in a two-dimensional layer framework structure (Table 2). There are π - π stacking interactions between adjacent pyridine rings of 3.77 (4) Å. A supramolecular three-dimensional network structure is

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

constructed by intermolecular hydrogen bonds and π - π stacking interactions (Fig. 2).

Experimental

The title complex was prepared by the addition of cobalt diacetate trihydrate (20 mmol), pyridine (3 ml) and formic acid (1 ml) to an aqueous solution of benzene-1,4-dioxyacetic acid (20 mmol), and the pH was adjusted to 6 with 0.1 *M* sodium hydroxide. Pink crystals were separated from the filtered solution after several days. Analysis calculated for $C_{12}H_{16}CoN_2O_6$: C 41.99, H 4.70, N 8.16%; found: C 41.71, H 4.83, N 8.06%.

Mo $K\alpha$ radiation

reflections

T = 293 (2) K

Prism, pink

 $R_{\rm int}=0.042$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -21 \rightarrow 21$

 $\begin{array}{l} k=-7\rightarrow8\\ l=-18\rightarrow18 \end{array}$

 $\theta = 3.2-27.5^{\circ}$ $\mu = 1.23 \text{ mm}^{-1}$

Cell parameters from 4837

 $0.45 \times 0.36 \times 0.22$ mm

1641 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0875P)^2$

+ 0.7449P] where $P = (F_o^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm min} = -0.54 \ {\rm e} \ {\rm \AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.87 \text{ e } \text{\AA}^{-3}$

1488 reflections with $I > 2\sigma(I)$

Crystal data

 $[\mathrm{Co}(\mathrm{CHO}_2)_2(\mathrm{C}_5\mathrm{H}_5\mathrm{N})_2(\mathrm{H}_2\mathrm{O})_2]$

```
M_r = 343.20
Monoclinic, C2/c

a = 16.564 (6) Å

b = 6.300 (2) Å

c = 14.597 (6) Å

\beta = 109.73 (2)°

V = 1433.7 (9) Å<sup>3</sup>

Z = 4

D_x = 1.590 Mg m<sup>-3</sup>
```

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{min} = 0.602, T_{max} = 0.766$ 5339 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.128$ S = 1.071641 reflections 103 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

Co1-N1	2.159 (2)	O1-C6	1.236 (3)
Co1-O1	2.081 (2)	O2-C6	1.253 (3)
Co1-O1W	2.143 (2)		
N1-Co1-N1 ⁱ	180	O1-Co1-O1W	93.30 (7)
O1-Co1-N1	92.37 (7)	O1W-Co1-N1	91.68 (7)
O1 ⁱ -Co1-N1	87.63 (7)	O1W ⁱ -Co1-N1	88.32 (7)
O1 ⁱ -Co1-O1	180	$O1W^i - Co1 - O1W$	180
$O1^{i}-Co1-O1W$	86.70 (7)	O1-C6-O2	126.6 (2)
-			

Symmetry code: (i) $\frac{1}{2} - x, \frac{3}{2} - y, 1 - z$.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1W1\cdots O2^{ii}$	0.86 (3)	1.98 (3)	2.810 (3)	163 (3)
$O1W-H1W2\cdots O2^{iii}$	0.86 (3)	1.95 (3)	2.773 (3)	163 (3)

Symmetry codes: (ii) x, y - 1, z; (iii) $\frac{1}{2} - x, y - \frac{1}{2}, \frac{3}{2} - z$.

C-bound H atoms were placed in calculated positions $[C-H = 0.97 \text{ Å} \text{ (aliphatic) and } U_{iso}(H) = 1.2U_{eq}(C)]$ in the riding-model

Figure 1

ORTEPII (Johnson, 1976) plot of (I), shown with 30% probability ellipsoids. [Symmetry code as in Table 1.]

approximation. Water H atoms were located in a difference Fourier map and refined using the riding-model approximation, with an O–H distance restraint of 0.85 (1) Å and $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm O})$.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

We thank the National Natural Science Foundation of China (No. 20101003), Heilongjiang Province Natural Science Foundation (No. B0007), the Educational Committee Foundation of Heilongjiang Province, and Heilongjiang University.

References

Coucouvanis, D., Reynolds, R. A. & Dunham, W. R. (1995). J. Am. Chem. Soc. 117, 7570–7571.

Davies, J. E., Rivera, A. V. & Sheldrick, G. M. (1977). Acta Cryst. B33, 156– 158.

- Groeneman, P. H., MacGillivray, L. R. & Atwood, J. L. (1999). *Inorg. Chem.* 38, 208–209.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lu, J., Yu, C., Niu, T.-Y., Paliwala, T., Crisci, G., Somosa, F. & Jacobson, A. J. (1998). Inorg. Chem. 37, 4637–4640.
- Pan, L., Ching, N., Huang, X.-Y. & Li, J. (2000). Inorg. Chem. 39, 5333-5340.
- Plater, M. J., Foreman, M. R. St J., Coronado, E., Gomez-Garcia, C. J. & Slawin, A. M. Z. (1999). J. Chem. Soc. Dalton Trans. pp. 4209–4216.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). *CrystalStructure*. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
- Sumner, C. E. (1988). Inorg. Chem. 27, 1320–1327.
- Sumner, C. E. & Steinmetz, G. R. (1985). J. Am. Chem. Soc. 107, 6124– 6126.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Ye, B.-H., Chen, X.-M., Xue, F., Ji, L.-N. & Mak, T. C. W. (2000). *Inorg. Chim.* Acta, **299**, 1–8.